lowing instrumental parameters: spectral width, 4000 Hz; pulse width, 15 μ s; delay between acquisitions, 500 μ s; number of acquisitions, 800; size, 16K; acquisition time, 1.02 s; line broadening, 1.0 Hz; temperature, 25 °C.

Acknowledgment. This investigation was supported by Grant

GM 25515 from the National Institutes of Health. Support for UCSF Liver Center core facilities employed in this study was provided by Grant P30 AM-26743. Field desorption mass spectra were obtained by the UCSF Biomedical Mass Spectrometry Resource supported by Grant RR 00719.

Ynenol Lactones: Synthesis and Investigation of Reactions Relevant to Their Inactivation of Serine Proteases[†]

Robin W. Spencer, Tim Fat Tam, Everton Thomas, Valerie J. Robinson, and Allen Krantz*

Contribution from Syntex Research, Mississauga, Ontario L5N 3X4, Canada. Received May 3, 1986

Abstract: The syntheses of ynenol lactones $[5(E \text{ or } Z) \cdot (3 \cdot R' \cdot 2 \cdot \text{propynylidene}) \cdot 3 \cdot R \cdot \text{tetrahydro} \cdot 2 \cdot \text{pyrones}; R = H, alkyl, benzyl; R' = H, alkyl, phenyl] which are designed as serine protease suicide substrates have been accomplished. E ynenol lactones are prepared via iodolactonization of <math>\omega$ -hexynoic and ω -pentynoic acids, followed by the CuI/Et₃N/PdCl₂(PPh₃)₂-mediated coupling of the resulting E iodo enol lactones with appropriate alkynes. Isomerization of E iodo enol lactones gives the Z isomers, which can be separated and coupled to give the Z ynenol lactones. We have shown that the alkaline hydrolysis of ynenol lactones parallels the reaction sequence that has been proposed to account for ynenol lactone inactivation of serine proteases, namely, lactone ring cleavage, formation of the allenone, and conjugate addition of a nucleophile to the β -carbon of the allenone. When the acetylene terminus of the ynenol lactone is unsubstituted, alkaline hydrolysis leads to the allenone without a detectable intermediate. When the terminus is alkyl or phenyl substituted, an intermediate (which is probably the proparyl ketone resulting from α protonation) is apparent in the reaction kinetics. Base-catalyzed isomerization of 1-hexyn-4-one and 2-hexyn-5-one to allenones indicates a profound substituent effect of γ substitution ($k_{\gamma \cdot H}/k_{\gamma \cdot Me} = 300$). Nucleophilic attack on the allenone is γ -phenyl substituted and is treated with hydroxide, an intermediate consistent with an ynenolate anion is apparent in the reaction kinetics and ultraviolet spectra; the intermediate is formed with a pK_a of 13.4. Similar pK_a values are observed in the reaction kinetics of hydroxide with γ -methyl-substituted allenones.

A contemporary and intellectually appealing strategy in drug design involves the use of latent reactive substrates as enzyme inactivators.¹ This strategy features a relatively unreactive "suicide substrate" S (Scheme I) that is designed initially to bind to a specific target enzyme E and then to be transformed during the normal course of enzyme catalysis to a highly reactive species S^{*}. Ideally, S^{*}, before it can escape from the active site, is trapped by an amino acid side chain or coenzyme to give an irreversibly inactivated enzyme E-X.

Electrophilic allenes have played an important role in the development of this strategy as the demonstrable or putative intermediates that cause enzyme inactivation.² The success of inhibitors that are designed to generate these Michael acceptors has led us to explore the use of allenones as the latent functional group in a series of novel serine protease inhibitors.³ In this paper we discuss the synthesis and nonenzymatic reactions of ynenol lactones 1–4, which are designed to produce electrophilic allenones at protease active sites.

Scheme II outlines the reactions that must occur to achieve enzyme inactivation by this strategy. These are enzyme acylation $(1 \rightarrow 5)$, formation of the allenone $(5 \rightarrow 7 \text{ or } 5 \rightarrow 6 \rightarrow 7)$, and capture of an enzyme nucleophile $(7 \rightarrow 8)$. Nonenzymatic models of each of these reactions will be presented herein to demonstrate the chemical and kinetic feasibility of this scheme. The characterization of these compounds as protease inhibitors will be presented elsewhere.³

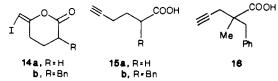
Synthesis

To our knowledge the ynenol lactones 1 have not been previously characterized,⁴ although their unsaturated analogues 9 have been frequently documented as natural products in the biosynthesis of polyacetylenes.⁵

R

The ynenol lactones in this study are prepared by coupling E or Z iodo enol lactones 10 and 11 with appropriate alkynes

0002-7863/86/1508-5589\$01.50/0 © 1986 American Chemical Society


[†]Contribution No. 241 from the Institute of Bioorganic Chemistry. This paper is dedicated to the memory of Dr. Howard J. Ringold.

^{(1) (}a) Walsh, C. T. Tetrahedon 1982, 38, 871–909; Trends Pharmacol. Sci. 1983, 5, 254–257. (b) Abeles, R. H.; Maycock, A. L. Acc. Chem. Res. 1976, 9, 313–319. (c) Rando, R. R. Science (Washington, D.C.) 1974, 185, 320–324; Acc. Chem. Res. 1975, 8, 281–288; Pharmacol. Rev. 1984, 36, 111–142. (d) Silverman, R. B.; Hoffman, S. J. Med. Res. Rev. 1984, 4, 415–447.

Scheme I

(Scheme III). The iodo enol lactones are obtained from the direct halolactonization of the corresponding ω -hexynoic and pentynoic acids⁶ (12) with N-iodosuccinimide according to the procedure of Krafft and Katzenellenbogen.⁷ This reaction is stereoselective and results in the exclusive formation of E olefins.⁷ Treatment with elemental iodine causes slow isomerization of the E iodo enol lactones, providing access to the Z isomers 11, which can in turn be converted to the Z ynenol lactones 2. The latter isomers can also be synthesized independently via the mercury-mediated cyclization of ω -iodoacetylenic acids (13).⁷

The ynenol valerolactones 4 are similarly prepared from the iodo enol lactones 14 and the hexynoic acids 15. The α,α -disubstituted ynenol lactone 3 is prepared from its corresponding acid 16.

The coupling reaction between iodo enol lactones and alkynes is catalyzed by $PdCl_2(Ph_3P)_2$ in the presence of cuprous iodide and triethylamine. In acyclic systems this reaction has been reported to be stereoselective and to proceed with retention of configuration.⁸ We observe that the coupling of all *E* iodo enol lactones and the simplest *Z* iodo enol lactone (**11a**) also proceeds with retention. However, in the reaction with **11b** a mixture of isomers [4:1, **2b:1b**] was obtained. Desilylation of the various ynenol lactones (**1a-d**, **2a,b**; R' = trimethylsilyl) to the unsubstituted acetylenes (**1a-d**, **2a,b**; R' = H) is achieved by treatment with silver nitrate and potassium cyanide.⁹

The assignments of configuration in both iodo enol and ynenol lactones were made with ¹H NMR, based on the chemical shift of the proton of the exo olefin. For example, the olefinic proton in the E isomer of methylenebutyrolactones and methylenebutenolides is consistently found downfield of its Z counterpart due to deshielding by the lactone oxygen.¹⁰ For the unsilylated

C. H. J. Am. Chem. Soc. 1975, 97, 2576–2578.
(3) (a) Tam, T. F.; Spencer, R. W.; Thomas, E. M.; Copp, L. J.; Krantz, A. J. Am. Chem. Soc. 1984, 106, 6849–6851. (b) Copp, L. C.; Krantz, A.; Spencer, R. W. Biochemistry, in press.
(4) An ynenol lactone is shown, however, in: Wat, C.-K.; Prasad, S. K.;

(4) An ynenol lactone is shown, however, in: Wat, C.-K.; Prasad, S. K.; Graham, E. A.; Partington, S.; Arnason, T.; Towers, G. H. N. *Biochem. Syst. Ecol.* 1981, 9, 59-62.

(5) (a) Bohlmann, F.; Burkhardt, T.; Zdero, C. Naturally Occurring Acetylenes; Academic: New York, 1973. (b) Reisch, J.; Mester, Z. Monaish. Chem. 1983, 114, 635-637. (c) Nawamaki, T.; Sakakibara, T.; Ohta, K. Agric. Biol. Chem. 1979, 43, 1603-1604. (d) Lam, J. Phytochemistry 1971, 10, 647-653.

(6) Cologne, J.; Gelin, R. Bull. Soc. Chim. Fr. 1954, 21, 797-798.

(7) Krafft, G. A.; Katzenellenbogen, J. A. J. Am. Chem Soc. 1981, 103, 5459-5466.

(8) (a) Ando, T.; Yu, M. H.; Yoshida, S.; Takahashi, N. Agric. Biol. Chem. 1982, 46, 717-722. (b) Robins, M.; Barr, P. J. Tetrahedron Lett. 1981, 421-424. (c) Austin, W. B.; Billow, M.; Kelleghan, W. J.; Lau, K. S. Y. J. Org. Chem. 1981, 46, 2280-2286.

(9) Schmidt, H. M.; Arens, J. A. Recl. Trav. Chim. Pays-Bas 1967, 86, 1138-1142.

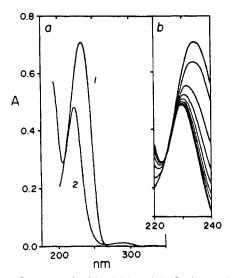


Figure 1. (a) Spectrum 1 is of 50 μ M 1a in 1.0 mL of water, 25 °C. The pH was raised by addition of 10 μ L of 50 mM borate buffer, pH 10, and spectrum 2 was taken approximately 10 min later. (b) Time course of the same reaction recorded at 1-min intervals after the pH change.

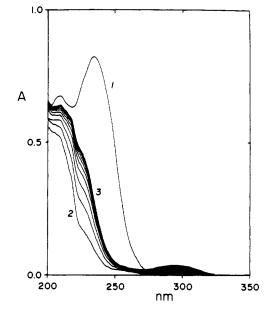


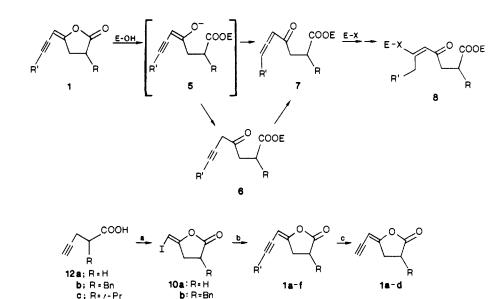
Figure 2. Spectrum 1 is of 50 μ M 1g in 1.0 mL of water, 25 °C. One microliter of 1 M NaOH was added, and spectra 2–3 were recorded at 2-min intervals.

ynenol lactones this proton is found near δ 5.2 for *E* isomers and δ 4.8 for *Z* isomers. The assignment was confirmed by the proton nuclear Overhauser effect: the *Z* isomer 2 (R = H, R' = trimethylsilyl) shows a strong enhancement of the olefinic proton signal when the methylene protons are irradiated, whereas the *E* isomer 1 (R = H, R' = trimethylsilyl) shows no such enhancement.¹¹

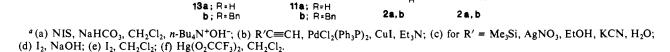
Hydrolysis and Rearrangement

In the hypothetical mechanism for the inactivation of serine proteases by ynenol lactones depicted in Scheme II, opening of the lactone ring and formation of the allenone are prerequisites to enzyme inactivation. We have investigated the alkaline hydrolysis of ynenol lactones as a model for this transformation.

Alkaline hydrolysis of ynenol lactones can be measured by loss of absorbance at 230 nm ($R' \neq Ph$) or 280 nm (R' = Ph). The rates are first order in hydroxide, ranging from 55 M^{-1} s⁻¹ (3) to 300 M^{-1} s⁻¹ (2a). The mechanism most likely proceeds by a


^{(2) (}a) Helmkamp, G. M., Jr.; Bloch, K. J. Biol. Chem. 1969, 244, 604-6022. (b) Bloch, K. Acc. Chem. Res. 1969, 2, 193-202. (c) Morisaki, M.; Bloch, K. Biochemistry 1972, 11, 309-314. (d) White, R. L.; Smith, R. A.; Krantz, A. Biochem. Pharmacol. 1983, 32, 3661-3664. Krantz, A.; Kokel, B.; Sachdeva, J.; Salach, J.; Claesson, A.; Sahlberg, C. In Drug Action and Design: Mechanism-Based Enzyme Inhibitors; Kalman, T., Ed.; Elsevier-North Holland: New York, 1979; pp 145-174. Krantz, A.; Lipkowitz, G. S. J. Am. Chem. Soc. 1977, 99, 4156-4159. (e) See: Seiler, N., Jung, M. J., Koch-Weser, J., Eds.; Enzyme-Activated Irreversible Inhibitors; Elsevier-Amsterdam, 1978. (f) Kalman, T. I. Drug Dev. Res. 1981, 1, 311-328. (g) Alston, T. A. Pharmacol. Ther. 1981, 12, 1-41. (h) Jung, M. J.; Koch-Weser, J. In Molecular Basis of Drug Action; Singer, T. P.; Ondarza, R. N., Eds.; Elsevier-North Holland: New York, 1981; p 135. (l) Covey, D. F.; Robinson, C. H. J. Am. Chem. Soc. 1976, 98, 5038-5040. (j) Batzold, F. H.; Robinson, C. H. J. Am. Chem. Soc. 1975, 97, 2576-2578.

^{(10) (}a) Yamamoto, M. J. Chem. Soc., Perkin Trans. 1 1981, 582-587.
(b) Bohlmann, F.; Reinecke, R. Chem. Ber. 1966, 99, 3437-3440.


⁽¹¹⁾ Inspection of Dreiding models shows that for the Z and E isomers these protons are approximately 2.6 and 3.8 Å apart, respectively.

Syntheses and Reactions of Ynenol Lactones

Scheme II

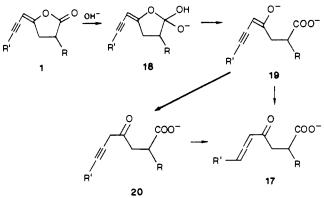
Scheme III^a

c:R=/-P

d:R=n-Bu 10

 $B_{AC}2$ pathway as in the cases of simple alkyl¹² and vinyl¹³ esters. A carbanion-mediated pathway (E1cB) for hydrolysis seems unlikely, since 3 (which does not possess a hydrogen α to the carbonyl and therefore cannot follow an E1cB pathway) hydrolyzes only 5-fold more slowly than 1b or 2b.14 The small value measured for imidazole catalysis of the hydrolysis of 1b ($k_{\rm im} = 0.018$ $\pm 0.003 \text{ M}^{-1} \text{ s}^{-1}$, 25 °C, $\mu = 0.25 \text{ M}$) is further support for a B_{AC}2 mechanism of hydrolysis of ynenol lactones.^{14a}

d: R=/7-Bu


d

COOH

If alkaline hydrolysis is a valid model for Scheme II, allenones must be the principal products of ring cleavage. Ultraviolet and proton NMR spectra provide the evidence for the high-yield conversion of ynenol lactones to allenones. As shown in Figure 1, ynenol lactone **1a** has a characteristic absorbance (λ_{max} 229 nm, ϵ 14 100 M⁻¹ cm⁻¹). On addition of base this band disappears, and a new species (λ_{max} 220, ϵ 9600) is formed. Similar absorbance changes are observed in the hydrolyses of other ynenol lactones: for example, 1c [232 (12300) \rightarrow 221 (8200)]; 1e [236 (13300) → 226 (\approx 8500)]; 1g, [234 (16 400) → 228 sh (\approx 9000)] (Figure 2); **2a** (228 (15000) \rightarrow 220 (10000)]; **4b** (240 (13900) \rightarrow 225 (9800)]. The new chromophore is consistent with those of allenones reported in the literature (λ_{max} 220–232, ϵ 7800–12 500).^{15,2i} When the acetylene is phenyl substituted, these bands are observed at longer wavelengths: **1f** [278 (25 100) \rightarrow 242 (24 500) (Figure 3a); **4a** [281 (22 500) \rightarrow 240 (20 500)]. These spectra (λ_{max} 240-242 nm) are similar to those reported for 4-phenyl-2,3-bu-

68 253-267.
(13) Euranto, E. K. Pure Appl. Chem. 1977, 49, 1009-1020.
(14) (a) Holmquist, B.; Bruice, T. C. J. Am. Chem. Soc. 1969, 91,
2993-3002. (b) Bamford, C. H.; Tipper, C. F. H. Comprehensive Chemical Kinetics; Elsevier: Amsterdam, 1972; Vol. 10, pp 168-176.
(15) (a) Carlson, R.; Henton, D. J. Chem. Soc., Chem. Commun. 1969,
674-675. (b) Meinwald, J.; Hendry, L. Tetrahedron Lett. 1969, 21,
1657-1660. (c) Kresze, G.; Runge, W.; Ruch, E. Justus Liebigs Ann. Chem. 1972, 756, 112-117.

Scheme IV

tadienoic acids^{15c} and thus are consistent with the production of γ -phenylallenones from 1f and 4a.

The olefinic portion of the ¹H NMR spectrum of **1b** is shown in Figure 4a. Upon addition of a slight excess of aqueous KOH, the spectrum of Figure 4b was observed. This degenerate ABX pattern has $\delta_{A,B}(H_2C = C = CHCO = 5.26, \delta_X(H_2C = CHCO)$ = 5.72, apparent $J_{A,X}$ = 5.9 Hz, and $J_{B,X}$ = 7.0 Hz and is in agreement with values reported for allenones.^{2i,15}

With allenone 17 established as the first observable product in the alkaline hydrolysis of ynenol lactones 1 and 2, the mechanism of this reaction can be addressed. Since the absorbance spectra recorded during the hydrolyses of 1a and 2a to 17 are isosbestic (Figure 1b), it is possible that when R' = H, protonation of enolate 19 occurs at the acetylenic terminus to give allenone 17 directly¹⁶ (Scheme IV). Alternatively, propargyl ketone 20

^{(12) (}a) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd ed.; Harper and Row: New York, 1981; pp 648-658.
(b) Balakrishnan, M.; Rao, G. V.; Venkatasubramanian, N. J. Chem. Soc., Perkin Trans. 2 1974, 1093-1096. Huisgen, R.; Ott, H. Tetrahedron 1959, 68 253-267.

⁽¹⁶⁾ While tetrahedral intermediate 18 could be protonated to give 17 or 20 directly, the stability of ynenolate 19 does not demand such a concerted mechanism. The intermediacy of 19 is also supported by the reaction dependence on [OH-] (vide infra).

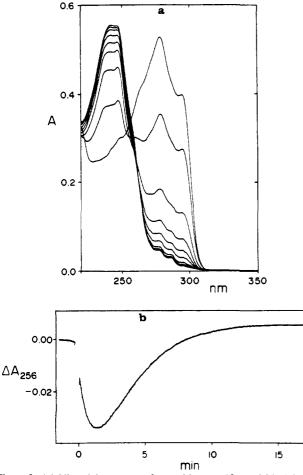
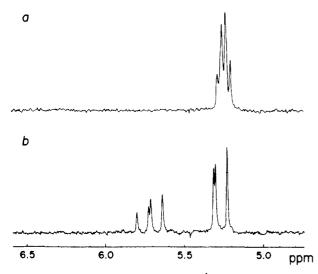
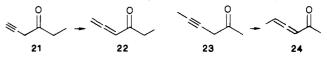


Figure 3. (a) Ultraviolet spectra of ynenol lactone 1f, 25 μ M in 1.0 mL of H₂O. After the first spectrum (λ_{max} 279 nm), 5 μ L of 10 mM NaOH was added, and spectra were recorded at 2-min intervals. (b) Time course of the same reaction, monitored at 256 nm. NaOH (30 μ L of 10 mM) was added at time zero.




Figure 4. (a) Olefinic region of the 80-MHz ¹H NMR of 1b, 3.8 mg in 0.54 mL of 10% (v/v) H₂O in CD₃CN, 30 C. The water signal at δ 3.2 was suppressed. (b) The same sample, immediately after the addition of 10 μ L of 2 M KOH (=1.1 equiv). Integration of this region indicated approximately 70% yield of allenone; the allenic proton signals subsequently disappeared with a half-time of 50 min.

could be a distinct intermediate that is too short lived to be observed.

When R' is alkyl, the spectra during hydrolysis are *not* isosbestic; the 230-nm absorbance of the ynenol lactone disappears, and the 220-nm allenone absorbance arises from a second, slower

reaction. For example, Figure 2 shows the hydrolysis of 1g in which these reactions have rates of 160 and 6 M^{-1} s⁻¹, respectively, a 27-fold difference. Similarly, when R' is phenyl, the spectra are not isosbestic, but because the rates differ by a smaller factor (6.1-fold for 1f), the intermediate is never more than a minor component (Figure 3). This lack of isosbesticity when R' is alkyl or phenyl suggests that the propargyl ketone 20 is a UV-silent intermediate leading to the allenone 17.

Although there have been numerous studies of propargylic rearrangements, there is very little kinetic data bearing on the interconversion of propargyl and propadienyl ketones. We have used a simple model system to investigate this rearrangement and obtain rate constants in an aqueous environment. Hexynones 21

and 23 were prepared, and their hydroxide- and imidazole-catalyzed isomerizations to 22 and 24 were followed by the appearance of allenone absorbance at 220 nm.

Both isomerizations follow the rate equation

$$k_{\text{obsd}} = k_{\text{OH}}[\text{OH}] + k_{\text{im}}[\text{Im}]$$

For 21 and 23 the values of $k_{\rm OH}$ - are 3500 ± 300 and 11 ± 1 M⁻¹ s⁻¹, respectively, and the values of $k_{\rm im}$ are 0.223 ± 0.002 and (7.4 ± 0.5) × 10⁻⁴ M⁻¹ s⁻¹ (aqueous, $\mu = 0.25$ M with KCl, 25 °C). Thus, for either catalyst, methyl substitution on the acetylene slows the isomerization 300-fold. The rate for hydroxide-catalyzed isomerization of 23 to 24 (11 M⁻¹ s⁻¹) is close to that measured for the second phase of the hydrolysis of 1g to its allenone (Figure 2): 6.0 ± 0.3 M⁻¹ s⁻¹. This congruence in rates lends support to the suggestion that 20 is the UV-silent intermediate when R' is methyl. If 20 were also formed when R' = H and then rearranged at a rate comparable to that of hexynoate 21 (3500 M⁻¹), it should have been observable as a kinetic intermediate: in the sequence

$$1 \xrightarrow{k_1} 20 \xrightarrow{k_2} 17$$

with $k_2/k_1 = 3500/200$, the maximum concentration of **20** would be 5% that of starting material,¹⁷ which would be apparent in scanning spectra such as in Figure 1b. No such kinetic intermediate was observed for **1a** or **2a**.

Additional evidence that allenone 17 may be formed without the intervention of a propargyl ketone intermediate when R' =H is provided by Bertrand and LeGras.¹⁸ They have shown that the isomerization of 21 to 22 in alkaline D_2O occurs without incorporation of deuterium α to the carbonyl, demonstrating that in the unsubstituted propargyl system protonation at the γ terminus is significantly faster than α protonation. It is noteworthy that this preference is in contrast to the classical results of Ringold¹⁹ with steroidal dienolates and recent reports involving acyclic dienolates, which protonate at the α carbon.²⁰

Addition of Nucleophiles

The final requirement for suicide inactivation according to Scheme II is the capture of a nearby enzyme nucleophile $(7 \rightarrow 8)$. The conjugate additions of hydroxide and *n*-butylamine to

(17) Frost, A. A.; Pearson, R. G. Kinetics and Mechanism, 2nd ed.; Wiley: New York, 1961; pp 166-169.
(18) Bertrand, M.; LeGras, J. C. R. Hebd. Seances Acad. Sci. 1967, 264,

 (18) Bertrand, M.; LeGras, J. C. R. Hebd. Seances Acad. Sci. 1967, 264, 520–526 and references therein.

 ⁽¹⁹⁾ Ringold, H. J.; Malhotra, S. K. Tetrahedron Lett. 1962, 15, 669–672.
 Malhotra, S. K.; Ringold, H. J. J. Am. Chem. Soc. 1963, 85, 1538–1539.
 (20) (a) Dubaine R. M.; Warden C. L. Guardina, Soc. 1985, 107.

^{(20) (}a) Duhaime, R. M.; Weedon, A. C. J. Am. Chem. Soc. 1985, 107, 6723-6724. Duhaime, R. M.; Lombardo, D. A.; Skinner, I. A.; Weedon, A. C. J. Org. Chem. 1985, 50, 873-879. Eng, S. L.; Roland, R.; Wan, C. S.; Weedon, A. C. J. Chem. Soc., Chem. Commun. 1983, 5, 236-238. (b) Note that the kinetically controlled products of conjugate additions to allenones appear to be the β , γ -olefinic species: Landor, S.R. In Chemistry of the Allenes; Landor, S. R., Ed.; Academic: New York, 1982; pp 373-387. Greaves, P. M; Landor, S. R. J. Chem. Soc., Chem. Commun. 1966, 322-323. Landor, S. R.; Landor, P. D.; Fomum, Z. T.; Mbafor, J. T.; Mpango, G. W.; Landor, P. D.; Landor, S. R. J. Chem. Soc. Perkin Trans. I 1973, 1108-1111.

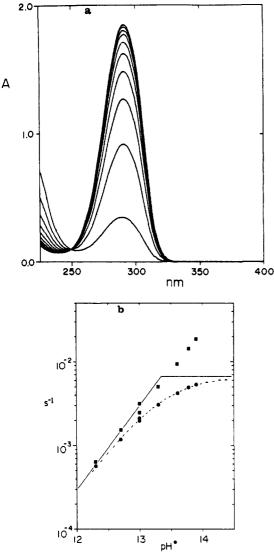
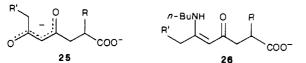



Figure 5. (a) Ultraviolet spectra at 3-min intervals after addition of propargyl ketone 21 (to approximately 90 μ M) to 0.10 M NaOH, 25 °C. (b) pH-rate profiles for the hydration of 22 (**m**) and 24 (**e**) (formed in situ from 21 and 23, respectively) to the keto enolate 27. pH* = 14 + log [NaOH]. The dashed curve is calculated from $k = k_{max}/(1 + [H^+]/K_a)$, with $k_{max} = 0.0067 \text{ s}^{-1}$ and $pK_a = 13.35$. The solid lines are the asymptotes to this function.

allenones 17, 22, and 24 provide model reactions for this step. Evidence that the final, stable products of alkaline hydrolysis of ynenol lactones are the 1,3-dione anions 25^{21} is as follows.

Hydrolysis of **1a** in 0.1 M KOH gives an absorbance with alkaline λ_{max} 293 nm, ϵ 23 600 (based on a 100% yield from **1a**), $pK_a =$ 9.44, and a chromophore in acid at 273 nm ($\epsilon \approx 1500$), which is characteristic of the I,3-dione system.²² Ynenol lactone **1b** was similarly subjected to alkaline hydrolysis and the reaction mixture acidified, extracted, and esterified with diazomethane to give methyl 2-benzyl-4,6-dioxoheptanoate, as shown by its alkaline λ_{max}

Table I. Hydroxide and Butylamine Addition to Allenones 17^a

parent lactone	R	R′	k _{OH} -	pK _a	k _{n-BuNH2} ^b
1a	Н	Н	0.015	с	0.27
1f	н	Ph	0.014	13.3	0.27
1b	Bn	н	0.013	с	0.23
1g	Bn	Me	0.0070	13.9	0.10

^{*a*} All rate constants in M^{-1} s⁻¹, 25 °C, measured under pseudo-firstorder conditions by appearance of **25** at 290 nm or **26** at 318 nm. ^{*b*} Allenones **17** were formed in situ in 0.1 M Na₂CO₃, pH 10.5, followed by butylamine addition to 5-20 mM. ^{*c*} No pK_a was observed; the reaction was first order in [OH⁻].

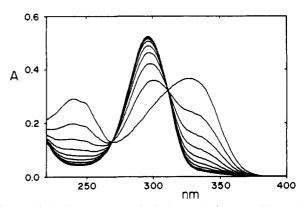
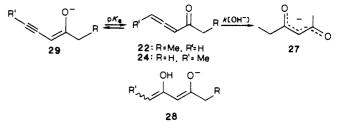



Figure 6. Ultraviolet spectra at 2-min intervals after the addition of 1f (25 μ M final) to 0.4 M NaOH, 25 °C. The first spectrum has maxima at 240 and 327 nm.

of 293 nm, $pK_a = 8.69$, and infrared, NMR, and mass spectra (see the Experimental Section). Treatment of 1a with *n*-butylamine (10 mM, aqueous) gives a chromophore with λ_{max} 312 nm, ϵ 23 000, indicating the formation of cis amino enone 26.^{22c}

Substituent effects on these conjugate additions were probed first with the simpler allenones 22 and 24, formed in situ from the propargyl ketones 21 and 23. Figure 5a shows the time course of the alkaline hydration of 22 to 27, and Figure 5b shows the

OH⁻ concentration dependence of the reactions. When the allenone terminus is unsubstituted (22), the reaction is first order in hydroxide²³ with k = 0.023 M⁻¹ s⁻¹. However, when the allene has a γ -methyl substituent (24), the reaction has an apparent pK_a of 13.4 and a maximum rate of 0.0067 s⁻¹; this implies a second-order rate at pH \ll pK_a (k in the above scheme) of 0.030 M⁻¹ s⁻¹. Thus, the substituent effect at pH \ll pK_a is small, but with γ -methyl substitution an intermediate is sufficiently stabilized that the reaction has an observable pK_a. As defined by the kinetics, this intermediate is formed by either proton abstraction from, or hydroxide addition to, allenone 24. Hydroxide addition would be expected to give 28, an isomer of the product 27, whereas proton abstraction should give ynenolate 29,²⁴ which is also an intermediate in the in situ production of allenones. Support for the latter assignment 29 is found when R' = phenyl (vide infra).

⁽²¹⁾ The precise configuration of these anions has not been established. They are shown in the E,Z' form in conformity with the results of: Raban, M.; Noe, E. A.; Yamamoto, G. J. Am. Chem. Soc. 1977, 99, 6527-6531. (22) (a) Covey, D. F.; Albert, K. A.; Robinson, C. H. J. Chem. Soc., Chem. Commun. 1979, 795-796. (b) Bell, R. P. The Proton in Chemistry, 2nd ed.; Cornell University Press: Ithaca, NY, 1973; p 105. (c) Kashima, C.; Yamamoto, M.; Sugiyama, N. J. Chem. Soc. C 1970, 111-114.

⁽²³⁾ There is a slight curvature in Figure 5b for 22; the data are equally well fit by $k = k_{max}/(1 + [H^+]/K_a)$ with $k_{max} = 0.064 \text{ s}^{-1}$ and $pK_a = 14.3$. In either case the apparent pK_a for 22 is at least 1 unit higher than that of 24.

⁽²⁴⁾ The trienolate $R'CH=C=C(CH_2R)O^-$ is a less likely candidate than **29**, since it is more highly strained and should be more difficult to form by proton abstraction for stereoelectronic reasons.

Scheme V

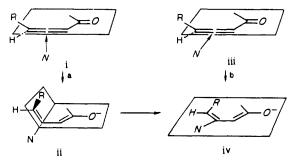


Table I presents the rates of conjugate addition of hydroxide and n-butylamine to allenones 17. The reaction of butylamine with the allenone from 1a was measured vs. pH; the data gave a kinetic pK_a of 10.4, showing as expected that the nucleophile is neutral butylamine. All other butylamine reactions were measured in buffer at pH 10.5. As in the hydration of 22 vs. 24, γ -phenyl or γ -methyl substitution on the allenone results in stabilization of an intermediate that is manifested in a kinetic pK_a of 13.3 or 13.9, respectively. In the phenyl system (from 1f) the intermediate has a strong ultraviolet absorbance (Figure 6). The chromophore at $\lambda_{max} = 327$ nm is formed immediately on the addition of 1f to 0.02-0.40 M NaOH and disappears isosbestically with the formation of 25 (R = H, R' = Ph) at λ_{max} 295 nm. When 1f is treated first with dilute base to give the 242-nm species (allenone 17; R = H, R' = Ph, as in Figure 3a) and then NaOH is added to 0.2 M, the 327-nm species is formed immediately, followed by slow formation of 25. If the mixture displaying the 327-nm absorption is rapidly acidified, this reaction is reversed: the 327-nm chromophore disappears with concomitant increase at 242 nm. Addition of more NaOH results in the return of the 327-nm species and eventual production of 25. The apparent extinction at 327 nm increases with $[OH^-]$ and is accurately fit by $\epsilon = \epsilon_{max}/(1 + [H^+]/K_a)$, with ϵ_{max} 26 900 and p $K_a = 13.4$. No such 327-nm species is seen when R' = H or methyl (e.g., Figure 5a), suggesting that this intermediate has the phenyl in conjugation (e.g., 28 or 29; R = H, R' = Ph), unlike the final product 25 in which the phenyl is isolated from the 1,3-dione anion.

Because formation of the 327-nm species is freely reversible, it cannot be the compound of structure 28. Even if 28 were slow to isomerize, neutralization would be expected²⁵ to result in ketonization to the 1,3-dione, not dehydration to the allenone (λ_{max} 242 nm). If the 327-nm intermediate is ynenolate **29** (R = H, R' = Ph), it must be formed by abstraction of the γ -allenic hydrogen of 17 (R = H, R' = Ph). Bushby and Whitham note the acidity of this hydrogen in related allenic acids and esters,²⁶ as indicated by its rapid exchange in alkaline D_2O . The acidity of allene protons is also manifest in the facile equilibration of methyl penta-2,3-dienoate and methyl pent-3-ynoate, which have an equilibrium constant near unity,^{26a} and in the comparable gas-phase acidities of propyne and allene.²⁷ The stability of ynenolate 29 when R' is alkyl (and therefore the acidity of 17 or 24) may also be indicated by the profound suppression by γ -methyl substitution of the rate of formation of allenones from ynenolates (vide supra).

The small substituent effects on conjugate addition to allenones (Table I) are in contrast to the large effects recorded for such additions to conjugated olefins. Guthrie²⁸ has shown that the rates of hydroxide addition to acrolein, 3-methylacrolein, and 3,3-dimethylacrolein are in the ratio 90:10:1. The lack of a substituent effect in the case of allenones is readily understood upon analysis of the two extreme modes of nucleophilic attack on the terminally substituted allenone, as pictured in Scheme V.

First, since terminal substituents attached to allenic Michael acceptors are one bond further removed from the point of nucleophilic attack than are their olefinic counterparts, steric effects

at the transition state should be less pronounced for allenes. Second, for stereoelectronic reasons²⁹ the most favorable approach for nucleophilic attack is orthogonal to the plane defined by $C_{\beta}C_{\alpha}CO$, leading directly to enolate ii with overlap optimized along the reaction coordinate (path a).

In this mode of attack the terminal double bond is virtually orthogonal to the developing enolate in the transition state. Thus, the terminal double bond and the substituents attached to it cannot effectively interact by resonance with the developing negative charge. It follows that the effect of a substituent at the allenic terminus should not be significantly different in the ground and transition states and that the rate of conjugate addition should be insensitive to the nature of the substituent R. It is worth noting that ii is a metastable species that would be expected to relax to the completely delocalized dienolate iv. With more fully substituted allenes, steric effects may offset the gain in delocalization energy on going from species ii to iv.

A pathway b in which approach of the nucleophile N occurs within the $C_{\beta}C_{\alpha}CO$ plane (iii) and leads directly to iv is unlikely to be followed. This path is of higher energy than path a because of the considerable barrier to rotation³⁰ about C_{α} - C_{β} , which must be overcome in order to achieve significant stabilization of the developing negative charge by the carbonyl.³¹

Conclusion

We have shown that ynenol lactones 1-4 and their products are chemically competent in the reactions required to inactivate esterases or proteases according to Scheme II. Allenones 17 are rapidly formed following hydrolytic cleavage of the lactone by base. When the acetylene terminus of the ynenol lactone is unsubstituted, no intermediate can be detected in this reaction; when the terminus is alkyl or phenyl substituted, the propargyl ketone 20 is formed as an intermediate. The kinetics of isomerization of hexynones 21 and 23 to allenones 22 and 24 show that the substituent effect is profound; methyl at the terminus slows the base-catalyzed rearrangement 300-fold.

Once formed, allenones are subject to nucleophilic attack at the β -carbon as expected. Attack by hydroxide and butylamine give, respectively, 1,3-dione anions and cis amino enones as final products. When the allenone is γ substituted, an intermediate consistent with ynenolate 19 is apparent in the kinetics of hydroxide attack. A pK_a of 13.3-13.9 for γ deprotonation of such allenones is also suggested by the reaction kinetics.

All of these reactions have been investigated in aqueous systems at 25 °C, so there are no a priori barriers to this chemistry occurring at an enzyme active site. The success or failure of these compounds as suicide substrates will therefore depend on enzyme specificity and relative rates of release vs. rearrangement and conjugate addition, as will be reported in forthcoming papers.^{3b}

Experimental Section

General Procedures. Analytical thin-layer chromatography (TLC) was performed with Merck silica gel 60 F-254 aluminum-backed plates. Compounds were visualized by ultraviolet light or phosphomolybdic acid spray reagent. Preparative TLC was carried out with 1-mm Whatman

⁽²⁵⁾ A similar argument can be made against the trans isomer of 28, which

⁽²⁵⁾ A similar argument can be trade against the trans isolite of 26, when also would be unlikely to possess the strong 327-nm chromophore.
(26) (a) Bushby, R. J.; Whitham, G. H. J. Chem. Soc. B 1969, 67–73. (b) Runge, W. In Chemistry of the Allenes; Landor, S. R., Ed.; Academic: New York, 1982; Vol. 3, pp 650–652.
(27) Oakes, J. M; Ellison, G. B. J. Am. Chem. Soc. 1983, 105, 2969–2975.
(20) Catherin J. Chemistry of the Allenes of the Chem. Soc. 1983, 105, 2969–2975.

⁽²⁸⁾ Guthrie, J. P.; Dawson, B. A. Can. J. Chem. 1983, 61, 171-178.

^{(29) (}a) An analogous argument involving stereoelectronic control in en-(a) In hindings arguint involving second by: Corey, E. J.; Sneen,
 R. A. J. Am. Chem. Soc. 1956, 78, 6269-6278. (b) Harvey, G. R.; Ratts,
 K. W. J. Org. Chem. 1966, 31, 3907-3910.
 (30) (a) Roth, W. R.; Raf, G.; Ford, P. W. Chem. Ber. 1974, 107, 48-52.

⁽b) Ample precedents point to the difficulty of generating a planar allylic intermediate from an allene in a single transition state: vinyl cations, rather than allyl cations, are formed when electrophiles add to simple allenes in solution (Jacobs, T. L. In *Chemistry of the Allenes*; Landor, S. R. Ed.; Academic: New York, 1982; Vol. 2, pp 417-510) and in the gas phase (Aue, D. H.; Davidson, W. R.; Bowers, M. T. J. Am. Chem. Soc. 1976, 98, COMPACT Science and Science an 6700-6702). Also, hydrochlorination of phenylallene proceeds through a transition state that structurally resembles the perpendicularly twisted α -vi-nylbenzyl cation: Okuyama, T.; Izawa, K.; Fueno, T. *Ibid.* **1973**, 95, 6749-6756.

⁽³¹⁾ Interestingly, β , γ -olefinic ketones should be the kinetically controlled products of protonation of either II or Iv.^{20b}

Syntheses and Reactions of Ynenol Lactones

4861-480 precoated plates. Flash column chromatography was carried out with Whatman LPS-II silica gel.

Proton and ¹³C NMR spectra were obtained at 80 and 20.1 MHz, respectively, on a Bruker WP-80 SY spectrometer, with CDCl₃ as solvent. Chemical shifts of both are given (ppm) from tetramethylsilane, and coupling constants are given in Hertz. Infrared (IR) spectra were recorded with a Perkin-Elmer Model 298 spectrometer and are presented (cm⁻¹) for key absorptions. Mass spectra were recorded with a Finnigan MAT-112S instrument in electron-impact mode at 80 eV, and highresolution spectra were measured with a Finnigan MAT-311A. Ultraviolet absorption spectra and kinetics were recorded on a Perkin-Elmer 559A spectrophotometer at 25 \pm 1 °C. All kinetics were run in water and measured under pseudo-first-order conditions, with compound at 10-100 µM and excess base. Rate constants were determined by nonlinear least-squares regression of the observed changes in absorbance vs. time to the first-order equation $A = A_0^{-kt} + B$. A Beckman 3560 meter was used to measure pH and was calibrated with commercial standards. Melting points were determined with a Buchi 510 melting point apparatus.

4-Pentynoic acid (12a) was purchased from Aldrich Chemical Co. 5-Hexynoic acid was prepared according to the literature³² or by the oxidation of 5-hexynol with pyridinium dichromate³³ in DMF. Petroleum ether was a mixture of alkanes boiling at 30-60 °C.

All trimethylsilyl-protected ynenol lactones were prepared by the procedure described for 30.

Preparation of Pentynoic and Hexynoic Acids. 2-Alkyl- or -benzyl-4-pentynoic acids were prepared by either one of two methods: (a) the alkylation of the corresponding substituted malonic ester with propargyl bromide in EtOH/NaOEt, followed by hydrolysis of the diester and thermal decarboxylation to the monoacid⁶ or (b) the condensation of the corresponding alkyl or benzyl ester with 3-(trimethylsilyl)prop-2-ynyl bromide in the presence of LDA, followed by basic hydrolysis to the acid. 2-Substituted 5-hexynoic acids were prepared by method (b) from 6-(trimethylsilyl)hex-5-ynoate (vide infra).

2-Benzyl-4-pentynoic Acid (12b). The acid was prepared following to the procedure of Cologne and Gelin:⁶ oil; IR 3290, 1710; ¹H NMR δ 2.1 (t, 1 H, C=CH, J = 3), 2.4 (m, 2 H, C=CCH₂), 2.8-3.2 (m, 3 H, PhCH₂, CHCO₂H), 7.3 (m, 5 H, Ph), 6.5-7.5 (br s, 1 H, COOH). **2-Isopropyl-4-pentynoic Acid (12c).** In a procedure similar to that

2-Isopropyl-4-pentynoic Acid (12c). In a procedure similar to that used in the preparation of 16, ethyl 2-isopropyl-5-(trimethylsilyl)pent-4-ynoate was prepared by condensing ethyl 3-methylbutanoate with (trimethylsilyl)propargyl bromide: bp 84-85 °C (1 mmHg); ¹H NMR δ 0.12 (s, 9 H, Me₃Si), 0.9, 1.0 (2 d, 6 H, 2CH₃), 1.3 (t, 3 H, CH₃), 1.95 [m, 1 H, (CH₃)₂CH], 2.4 (m, 3 H, C=CCH₂, CHCO₂Et), 4.2 (q, 2 H, CH₂). Hydrolysis with aqueous NaOH yielded 12c: bp 95-96 °C (1 mmHg); IR 3300, 2500-3500, 1700; ¹H NMR δ 1.0, 1.01 (2 d, 6 H, 2CH₃), 2.0 (m, 1 H, C=CH), 2.1 [m, 1 H, (CH₃)₂CH], 2.5 (m, 3 H, C=CCH₂, CHCO₂H), 10.8-11.2 (br s, COOH).

2-Propargylhexanole Acid (12d). This acid was prepared from propargyl bromide and diethyl butylmalonate according to the procedure of Cologne and Gelin;⁶ bp 110-112 °C (1 mmHg).

6-(Trimethylsilyl)hex-5-ynol. To a three-neck flask equipped with a 500-mL pressure-equalizing funnel and an argon gas inlet/outlet was added 50 g (0.51 mol) of 5-hexynol (Farchan) in 100 mL of THF under argon. The flask and its contents were flushed with argon, and then n-BuLi (700 mL, 1.6 M, 2.2 equiv; Aldrich) was added dropwise over a period of 45 min at -40 °C. Å white precipitate started to form after approximately 30 min. The solution was then warmed to -20 °C, and 130 mL of trimethylsilyl chloride was added dropwise over a 30-min period. The reaction mixture was left at room temperature overnight and then filtered, and the filtrate was evaporated to an oil. The oily residue was partitioned between ether and saturated ammonium chloride solution. The ether layer was washed with water, dried over $MgSO_4$, and then evaporated to give an oil. To this oil were added 80 mL of EtOH, 0.5 mL of concentrated HCl, and 5 mL of water. The mixture was stirred at room temperature for 1 h. Saturated brine solution was added, and the mixture was extracted with ether. The combined ethereal extracts were further washed with water and dried over MgSO₄. Solvent evaporation gave an oil that was distilled to give the title compound: 55 g (63%); bp 80 °C (0.1 mmHg); IR 3300-3400, 2160, 1250; ¹H NMR δ 1.7 (m, 4 H, H2, H3), 2.3 (m, 2 H, H4), 3.7 (m, 2 H, H1)

6-(Trimethylsilyl)hex-5-ynoic Acid. To a solution of 6-(trimethylsilyl)hex-5-ynoi (10 g, 58.7 mmol) in 400 mL of dry DMF was added 98 g (0.26 mmol) of pyridinium dichromate. The solution was stirred in the dark for 24 h and then partitioned between ether and water. The ether extract was dried over MgSO₄ and evaporated to an oil. Distillation gave the title compound: 6.5 g (60%); bp 121-124 °C (1 mmHg); IR 3290, 2162, 1720; ¹H NMR δ 0.14 (s, 9 H, Me₃Si), 1.8 (m, 2 H, H3), 2.4–2.6 (m, 4 H, H2, H4).

Ethyl 6-(Trimethylsilyl)hex-5-ynoate. To a solution of 5.3 g (32.7 mmol) of 1,1-carbonyldiimidazole in 80 mL of dry THF under argon was added a solution of 5.03 g (27.3 mmole of 6-(trimethylsilyl)-5-hexynoic acid in 15 mL of dry THF. The mixture was stirred for 1 h. Absolute EtOH (80 mL) and pyridine (1 mL) were then added, and the resulting mixture was stirred at room temperature for 48 h. The solvent was evaporated, and the residual oil was extracted with ether and 1.5% HCl. The ethereal layer, which was washed with water and then dried, was evaporated to an oil (5.1 g, 88%). This material was purified by distillation: bp 70-75 °C (0.6 mmHg); IR 2170, 1735; ¹H NMR δ 0.15 (s, 9 H, Me₃Si), 1.3 (t, 3 H, CH₃), 1.85 (m, 2 H, H3), 2.2-2.5 (m, 4 H, H2, H4), 4.1 (q, 2 H, CH₂).

2-Benzylhex-5-ynoic Acid. To a three-neck flask equipped with septum and inert gas inlet and outlet were added 15 mL of dry THF and 1.6 mL (11.4 mmol) of diisopropylamine. n-Butyllithium (7 mL, 1.6 M) was added at 0 °C, and the resulting solution was stirred at 0 °C for 30 min. The solution was cooled to -78 °C. Ethyl 6-(trimethylsilyl)hex-5-ynoate (2 g, 9.4 mmol) in dry THF was added slowly. The resulting mixture was then stirred for 25 min. A solution of benzyl bromide (2 g, 11.6 mmol) in dry THF was added, and the reaction mixture was allowed to warm up to room temperature slowly. After the mixture stood for 2 days, the solvent was evaporated, and the residue was partitioned between ether and 5% HCl. The ethereal extract, which was washed with water and dried, was evaporated to an oil. To this oil were added NaOH (5%, 35 mL) and EtOH (60 mL). The mixture was refluxed for 75 min and then left at room temperatue overnight. Ethanol was removed under reduced pressure. The residue was partitioned between ether and 5%HCl. The ethereal layer was washed with 5% NaOH solution (2×75 mL), and the basic extract was acidified to pH 1 with dropwise addition of concentrated HCl. The acidified solution was extracted with ether. The ethereal extract, which was washed with water and dried, was evaporated to an oil. This oil was recrystallized from ether/hexane: 1.43 g (75%); mp 125-126 °C; IR 3290, 2110, 1700; ¹H NMR δ 1.8 (m, 2 H, H3), 2.0 (t, 1 H, C=CH, J = 2.2), 2.2 (m, 2 H, H4), 2.7-3.1 (m, 3 H, H2, PhCH₂), 7.2 (m, 5 H, Ph), 9.8-10.6 (br s, 1 H, COOH); MS, m/z 220 (MNH₄⁺), 203 (MH⁺), 202 (M⁺). Ethyl 2-Methyl-3-phenylpropionate. A solution of 6.8 g (0.067 mmol)

Ethyl 2-Methyl-3-phenylpropionate. A solution of 6.8 g (0.067 mmol) of diisopropylamine in 40 mL of dry THF was injected into a three-neck flask under argon. *n*-BuLi (42.2 mL, 1.6 M) was added slowly at 0 °C. The resulting mixture was stirred at 0 °C for 30 min and then cooled to -78 °C. A solution of ethyl 3-phenylpropionate (11.1 g, 67 mmol) was added slowly. Following the addition, the mixture was stirred at -78 °C for 30 min. A solution of methyl iodide (10 g, 70.9 mmol) in 5 mL of dry THF was then added. The mixture was stirred at -78 °C for 1 h, warmed to room temperature for 1 h, and then partitioned between ether and water. The ethereal layer was washed with 5% HCl, brine solution, and water, dried over MgSO₄, and then evaporated to give an oil (11 g, 85%). The material was purified by distillation: bp 80–85 °C (06 mmHg); IR 3100–2800, 1732; ¹H NMR δ 1.1 (d, 3 H, CH₃), 1.2 (t, 3 H, CH₃CH₂O, 2.8 (m, 3 H, PhCH₂, CH), 4.1 (q, 2 H, CH₂), 7.2 (m, 5 H, Ph).

Ethyl 2-Benzyl-2-methyl-5-(trimethylsilyl)pent-4-ynoate. To a solution of 2.2 mL (1.58 g, 15.6 mmol) of diisopropylamine in 20 mL of dry THF was added dropwise a solution of *n*-BuLi (9.7 mL, 1.6 M) at 0 °C. The solution was stirred at 0 °C for 30 min and then cooled to -78 °C. A solution of ethyl 3-phenyl-2-methylpropionate (2.5 g, 14.9 mmol) in 10 mL of dry THF was added. After 30 min, 3 g (15.7 mmol) of (trimethylsilyl)propargyl bromide³⁴ in 10 mL of dry THF was added. The mixture was slowly warmed to 0 °C and maintained at 0 °C for 1.75 h. The reaction mixture was quenched with 5% HCl and partitioned between ether and 5% HCl. The ethereal layer, which was washed with brine solution and water, was dried and evaporated to an oil (3.5 g). The oil was chromatographed on silica gel (5% EtOAc in petroleum ether) to give the title compound: 2.7 g (67%); IR 2170, 1738; ¹H NMR δ 0.2 (s, 9 H, Me₃Si), 1.3 (t + s, 6 H, 2CH₃), 2.5 (s, 2 H, C=CCH₂), 3.0 (s, 2 H, PhCH₂), 4.15 (q, 2 H, CH₂), 7.2 (m, 5 H, Ph). **2-Benzyl-2-methylpent-4-ynoic Acid** (16). To a solution of ethyl 2-

2-Benzyl-2-methylpent-4-ynoic Acid (16). To a solution of ethyl 2benzyl-2-methyl-5-(trimethylsilyl)pent-4-ynoate (2.65 g, 7.43 mmol) in EtOH was added 30 mL of 5% NaOH. The mixture was refluxed overnight after which time the EtOH was removed under reduced pressure. The solution was acidified by dropwise addition of concentrated HCl and extracted with ether. The ethereal extract was washed with 5% NaOH. The basic wash was acidified with concentrated HCl and extracted with ether. The ethereal extract, which was washed with water and dried, was then evaporated to an oily solid that was chromatographed on silica gel (5% EtOAc in petroleum ether). The purified product was

(34) Miller, R. B. Synth. Commun. 1972, 2, 267.

⁽³²⁾ Holland, B. C.; Gilman, N. W. Synth. Commun. 1974, 4, 202.

⁽³³⁾ Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 399-402.

recrystallized from petroleum ether: 1.25 g (87%); mp 87.5–91.5 °C; IR 3300, 2112, 1690; ¹H NMR δ 1.7 (s, 3 H, CH₃), 2.1 (t, 1 H, C=CH, J = 2.65), 2.38 (d, 2 H, C=CCH₂), 3.0 (s, 2 H, PhCH₂), 7.3 (s, 5 H, Ph); MS, m/z 202 (M⁺), 187, 157, 111.

General Procedure for Iodolactonization. Iodo enol lactones were prepared according to the procedure of Krafft and Katzenellenbogen.⁷ Typically, to a solution of 2 mmol of the acetylenic acid in 25 mL CH₂Cl₂ were added sequentially 2 mmol of *N*-iodosuccinimide, 2 mmol of NaH CO₃, and 0.5 mL of 0.4 M tetrabutylammonium hydroxide (40% in water; Aldrich). The reaction mixture was stirred vigorously for 30 min and then diluted with 50 mL of CH₂Cl₂. The resulting mixture was extracted with 5% sodium thiosulfate solution, brine, and water. The CH₂Cl₂ layer, which had been dried over Na₂SO₄, was evaporated to an oil, which was further purified by flash column chromatography (silica gel 60, 10% EtOAc and petroleum ether). Most iodo enol lactones were unstable and therefore were used immediately without any further purification. The following compounds were prepared by this procedure from the ω -acetylenic acids indicated in the text and Scheme III.

5(E)-(Iodomethylene)tetrahydro-2-furanone (10a): 89%; IR 1810, 1655; ¹H NMR δ 2.8 (m, 4 H, H3, H4), 5.8 (m, 1 H, C=CH).

3-Benzyl-5(*E*)-(iodomethylene)tetrahydro-2-furanone (10b): 72.4%; oil, IR 3020, 3080, 1800, 1655; ¹H NMR 2.6-3.3 (m, 5 H, H3, H4, PhCH₂), 5.8 (m, 1 H, C=CH), 7.3 (m, 5 H, Ph).

3-Isopropyl-5(*E***)**-(iodomethylene)tetrahydro-2-furanone (10c): 81.5%; oil, IR 1800, 1650; ¹H NMR δ 0.95, 1.04 (2d, 6 H, 2CH₃), 2.2 [m, 1 H, CH(CH₃)₂], 2.8 (m, 3 H, H3, H4), 5.8 (m, 1 H, C=CH).

3-Butyl-5(E)-(iodomethylene)tetrahydro-2-furanone (10d): 70%; oil; IR 3080, 1800, 1655; ¹H NMR δ 0.9 (m, 3 H, CH₃), 1.3 (m, 6 H, CH₂CH₂CH₂), 2.4-3.1 (m, 3 H, H3, H4), 5.8 (dd, 1 H, C=CH, J = 1.9, 2.3).

6(E)-(Iodomethylene)tetrahydro-2-pyrone (14a): 81%; IR 1750, 1610; ¹H NMR δ 1.63–1.95 (m, 2 H, H4), 2.40–2.78 (m, 4 H, H3, H5), 5.93 (t, 1 H, J= 1.9).

3-Benzyl-6(*E*)-(iodomethylene)tetrahydro-2-pyrone (14b): 73%; IR 1750, 1620; ¹H NMR δ 1.7 (m, 2 H, H.4), 2.5–2.8 (m, 4 H, PhCH₂, H5), 3.2 (m, 1 H, H3), 5.9 (dd, 1 H, C=CH, *J* = 1.5, 1.6), 7.2 (m, 5 H, Ph).

3-Benzyl-3-methyl-5(*E*)-(**iodomethylene**)**tetrahydro-2-furanone** (**31**): 80%; mp 75–78 °C; IR 1788, 1657; ¹H NMR δ 1.4 (s, 3 H, CH₃), 2.75, 3.1 (AB q, 2 H, PhCH₂, J_{AB} = 13.3), 2.5, 2.95 (ABX, 2 H, H4, J_{AB} = 17.7, $J_{CH_2C=CH}$ = 1.9, 2.1), 5.6 (dd, 1 H, J = 1.9, 2.1), 7.3 (m, 5 H, Ph); MS, m/z 328 (M⁺), 237 (M⁺ – PhCH₂), 201 (M⁺ – 1).

5(Z)-(Iodomethylene)tetrahydro-2-furanone (11a). Iodine (1 g) was added to a solution of 5(E)-(iodomethylene)tetrahydro-2-furanone (10a; 500 mg, 2.2 mmol) in CH₂Cl₂ (50 mL). The mixture was protected from light and stirred at room temperature for 26 h, diluted with CH₂Cl₂ (100 mL), and washed with 5% sodium thiosulfate and the brine. TLC analysis of this solution showed two spots (R_f 0.2, 0.5; 20% EtOAc/petroleum ether). The solution was dried over MgSO4 and evaporated to an oil. NMR analysis of this oil showed that this material contained a 4:1 mixture of E:Z isomers (based on integration of the olefinic protons at δ 5.8 and 5.2). The two isomers were separated by column chromatography (20% EtOAc/petroleum ether) to give 320 mg of the E isomer and 80 mg of the Z isomer. Alternatively, mercuric trifluoroacetate (1.43 g, 3.3 mmol) was added to a solution of 5-iodo-4-pentynoic acid³⁵ (300 mg, 1.3 mmol) in 25 mL of CH₂Cl₂. The reaction mixture, which was stirred in the dark for 52 h at room temperature in a stoppered flask, was then diluted with CH₂Cl₂ (25 mL), extracted with saturated NaHCO₃, and washed with brine. The organic layer was dried $(MgSO_4)$ and evaporated to a solid (60 mg, 20%): mp 78-79 °C, IR 3080, 3000, 1810, 1660; ¹H NMR δ 2.8 (m, 4 H, H3, H4), 5.2 (m, 1 H, C=CH).

3-Benzyl-5(Z)-(iodomethylene)tetrahydro-2-furanone (11b). The title compound was generated from 10b (4.53 g) by the isomerization procedure described for the preparation of 11a. Workup after 90 h of reaction time gave the E:Z isomers (3:1, based on integration ratio of protons at δ 5.75 and 5.15). The isomers were separated by column chromatography (8% EtOAc/petroleum ether: E isomer, R_f 0.5, 1.99 g; Z isomers (0.4:1, 430 mg) was also isolated. 11b: IR 1810, 1665; ¹H NMR δ 2.7-3.3 (m, 5 H, H3, H4, CH₂Ph), 5.2 (dd, 1 H, C=CH, J = 1.35, 2.0), 7.2 (m, 5 H, Ph); MS, m/z 314 (M⁺), 223 (M⁺ - PhCH₂) 187 (M⁺ - I); exact mass calcd 313.9803, found 313.9794.

5(E)-[3-(Trimethylsilyl)prop-2-ynylidenejtetrahydro-2-furanone (30). A three-neck flask was equipped with argon gas inlet, outlet, and septum and was flushed with argon. A solution of 1.77 g (7.9 mmol) of 5-(E)-(iodomethylene)tetrahydro-2-furanone (10a) was added to the flask, followed by 109 mg (0.155 mmol) of bis(triphenylphosphine)palladium-(II) chloride and 106 mg (0.555 mmol) of cuprous chloride. (Tri-

methylsilyl)acetylene (1.08 mL, 9.25 mmol) was added, and the resulting mixture was stirred at 35 °C for 6 h. The reaction mixture was diluted with CH₂Cl₂, and then the solvent was evaporated, leaving a residue that was extracted with toluene and filtered. The toluene extract was evaporated to an oil, which was further purified by column chromatography on silica gel (elution gradient: hexane $\rightarrow 10\%$ EtOAc/hexane). This procedure yielded the title compound after recrystallization from hexane: 680 mg (44%); mp 51.5–52 °C; IR (CHCl₃) 2130, 1800, 1662; ¹H NMR δ 0.2 (br s, 9 H, Me₃Si), 2.8, 3.1 (2 m, 4 H, H3, H4), 5.35 (t, 1 H, C=CH, J = 2.1); ¹³C NMR δ 24.5, 26.8 (CH₂CH₂), 86.7 (HC=C), 98.8, 99.2 (C=C), 162.3 (C5), 173.8 (CO).

5(*E*)-**Prop-2-ynylidenetetrahydro-2-furanone (1a).** To a solution of 5(E)-[(3-trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone (250 mg, 1.29 mmol) in 5 mL of absolute EtOH under argon at 0 °C was added a solution of silver nitrate (0.879 g, 5.17 mmol) in 7 mL of water. A white suspension was formed immediately, which was stirred for 30 min at 0 °C in the dark. Meanwhile, a solution of 2 g (30.7 mmol) of potassium cyanide in 20 mL of water was prepared. The reaction mixture was mixed with 5 mL of CH₂Cl₂ and poured into the KCN solution with rapid stirring. The mixture was extracted with CH₂Cl₂ (2 × 25 mL). The CH₂Cl₂ layer was dried over Na₂SO₄ and then evaporated to a solid. The solid was recrystallized from CH₂Cl₂/hexane (9:1) to give the title compound: 70 mg (44.5%); mp 87-88 °C; IR (CHCl₃), 3300, 2100, 1810, 1660; ¹H NMR δ 2.8 (m, 2 H, H3), 3.1 (d, 1 H, C=CH, J = 2.4); MS, m/z 122 (M⁺), 94 (M⁺ - CO).

3-Benzyl-5(E)-prop-2-ynylidenetetrahydro-2-furanone (1b). 3-Benzyl-5(E)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone was prepared from **10b**: 41%; mp 68-69 °C (hexane); IR (CHCl₃) 2120, 1800, 1660; ¹H NMR δ 0.2 (s, 9 H, Me₃Si), 2.6-3.2 (m, 5 H, H3, H4, PhCH₂), 5.3 (m, 1 H, C=CH), 7.1-7.4 (m, 5 H, Ph); MS, *m/z* 284 (M⁺), 269 (M⁺ - CH₃), 194 (M⁺ - PhCH₂). Desilylation with AgNO₃/KCN as above gave 3-benzyl-5(E)-prop-2-ynylidenetetrahydro-2-furanone (**1b**): 31%; mp 64-65 °C (ether/hexane, 1:10); IR (CHCl₃) 3300, 2100, 1800, 1600; ¹H NMR δ 2.9 (d, 1 H, C=CH), 2.5-3.2 (m, 5 H, H3, H4, PhCH₂), 5.2 (m, 1 H, C=CH), 7.2 (m, 5 H, Ph); MS, *m/z* 212 (M⁺), 145, 66, 91; exact mass (M⁺) calcd 212.0837, found 212.0848, (M⁺ - CO) calcd 184.0881, found 184.0879. Anal. Calcd for C₁₄H₁₂O₂: C, 79.22; H, 5.70. Found: C, 79.15; H, 5.87.

3-Isopropyl-5(*E*)-**prop-2-ynylldenetetrahydro-2-furanone** (1c). 3-Isopropyl-5(*E*)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone, prepared from 10c, was purified by vacuum distillation: 45%; bp 118-120 °C (1 mmHg); ¹H NMR δ 0.2 (s, 9 H, Me₃Si), 1.0 (t, 6 H, 2CH₃), 2.2 [m, 1 H, CH(CH₃)₂], 2.6-3.1 (m, 3 H, H3, H4), 5.3 (dd, 1 H, C=CH, *J* = 2.1, 2.2); MS, *m/z* 236 (M⁺), 215, 73. Desilylation with AgNO₃/KCN as above gave 3-isopropyl-5(*E*)-prop-2-ynylidenetetrahydro-2-furanone (1c): 75%, IR 3280, 1805, 1665; ¹H NMR δ 1.0 (t, 6 H, 2CH₃), 2.1 [m, 1 H, CH(CH₃)₂], 2.8 (m, 3 H, H3, H4), 3.1 (d, 1 H, *J* = 2.1, C=CH), 5.3 (m, 1 H, C=CH); MS, *m/z* 164 (M⁺), 149 (M⁺ - CH₃) 121 (M⁺ - *i*-Pr); exact mass (M⁺) calcd 164.0837, found 164.0844, (M⁺ - CH₃) calcd 149.06025, found 149.0603, (M⁺ - Pr) calcd 121.0290, found 121.0286.

3-Butyl-5(E)-prop-2-ynylidenetetrahydro-2-furanone (1d). 3-Butyl-5(E)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone was prepared from **10d** and purified by vacuum distillation: 56%; bp 140–144 °C (1 mmHg); IR 2130, 1810, 1660; ¹H NMR δ 0.2 (s, 9 H, Me₃Si), 0.9 (m, 3 H, CH₃), 1.4 (m, 6 H, CH₂CH₂CH₂), 2.8 (m, 3 H, H3, H4), 5.3 (m, 1 H, C=CH); MS, m/z 250 (M⁺), 193 (M⁺ – Bu), 138, 111; exact mass (M⁺) calcd 250.1389 found 250.1358, (M⁺ – CH₃) calcd 235.1154, found 235.1117. Desilylation with AgNO₃/KCN gave **1d**, which was purified by vacuum distillation (the distillate turned red on standing at room temperature): 68.4%; bp 108–110 °C (1 mmHg); IR (CHCl₃) 3300, 2100, 1805, 1655; ¹H NMR δ 0.9 (br t, 3 H, CH₃), 1.4 (m, 6 H, CH₂CH₂CH₂), 2.8 (m, 3 H, H3, H4), 3.1 (d, 1 H, C=CH, J = 2.2), 5.25 (m, 1 H, C=CH); MS, m/z 178 (M⁺), 111, 66, 28; exact mass (M⁺) calcd 178.0994, found 178.0999, (M⁺ – **B**u) calcd 121.0290, found 121.0286, (M⁺ – COEt) calcd 121.0653, found 121.0649.

5(E)-2-Octynylidenetetrahydro-2-furanone (1e). This compound was prepared after 1f. Cuprous heptyne³⁶ was used in place of cuprous phenylacetylide, and the product was isolated as an oil after workup and column chromatography (10% EtOAc in petroleum ether): 7.6%; IR 1815, 1665; ¹H NMR δ 0.9 (m, 3 H, CH₃), 1.5 (m, 6 H, CH₂CH₂CH₂), 2.3 (m, 2 H, C=CCH₂), 2.8, 3.2 (2m, 4 H, H3, H4), 5.3 (m, 1 H, C=CH); MS, m/z 193 (MH⁺).

5(E)-(3-Phenylprop-2-ynylidene)tetrahydro-2-furanone (1f). A mixture of cuprous phenylacetylide³⁶ (0.65 g, 4.0 mmol) and 5(E)-(iodomethylene)tetrahydro-2-furanone (0.809 g, 3.6 mmol) in 20 mL of dry

⁽³⁵⁾ Ueno, A.; Maeda, T. Yakugaku Zasshi 1970, 90, 1578-1580.

⁽³⁶⁾ Castro, C. E.; Gaughan, E. J.; Owsley, D. C. J. Org. Chem. 1966, 31, 4071-4078.

DMF was heated under argon at 110 °C for 1.5 days. The solution was cooled and partitioned between ether and water. The ether layer was dried over MgSO₄ and then evaporated to an oil. The oil was purified by repeated column chromatography on silica gel (elution gradient: 10% \rightarrow 20% EtOAc in petroleum ether) to give 1f: 0.4 g (64%); mp 90-91 °C; IR 1810, 1655; ¹H NMR δ 2.8, 3.2 (2 m, 4 H, H3, H4), 5.6 (t, 1 H, C=CH, J = 2.2), 7.3 (m, 5 H, Ph); MS, m/z 198 (M⁺), 170 (M⁺ - CO).

3-Benzyl-5(*E*)-but-2-ynylidenetetrahydro-2-furanone (1g). To a solution of 10b (1.1 g, 3.2 mmol) in dry THF (6 mL) and anhydrous triethylamine (11 mL) under argon was added bis(triphenylphosphine)-palladium(II) chloride (0.1 g, 0.14 mmol) and cuprous iodide (0.09 g, 0.47 mmol). Propyne gas was bubbled into the reaction mixture slowly over a period of 30 min. The mixture was stirred at room temperature for 2 h and diluted with CH₂Cl₂. Insoluble material was removed by filtration through Celite and the filtrate evaporated to give an oil that was further purified by column chromatography (3% EtOAc in petroleum ether) to give a brownish solid: 0.4 g (50.5%); mp 74-76 °C; IR 1800, 1665; ¹H NMR δ 1.95 (d, 3 H, CH₃, J = 2.3), 2.8-3.1 (m, 5 H, H3, H4, PhCH₂), 5.2 (m, 1 H, C=CH), 7.2 (m, 5 H, Ph); MS, m/z 226 (M⁺), 211.

5(*Z*)-**Prop-2**-ynylidenetetrahydro-2-furanone (2a). 5(*Z*)-[3-(Trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone was prepared by a procedure analogous to that described for **30** using **11a** as substrate: 81% mp 114-115 °C (pentane/CH₂Cl₂, 9:1); IR (CHCl₃) 1810, 2110, 1670; ¹H NMR δ 0.2 (s, 9 H, Me₃Si), 2.8 (m, 4 H, H3, H4), 4.8 (t, 1 H, C=CH, *J* = 1.7). Anal. Calcd for Cl₀H₁₄O₂Si: C, 61.82; H, 7.26. Found: C, 61.68; H, 7.04. Desilylation with KCN/AgNO₃ gave **2a**: 68%; mp 84-85 °C; IR (CHCl₃) 3270, 1810, 1665; ¹H NMR δ 2.8 (m, 4 H, H3, H4), 3.1 (d, 1 H, *J* = 2.4, C=CH), 4.8 (m, 1 H, C=CH). Anal. Calcd for C₁H₆O₂: C, 68.84; H, 4.95. Found: C, 68.83; H, 4.88.

3-Benzyl-5(Z)-prop-2-ynylidenetetrahydro-2-furanone (2b). 3-Benzyl-5(Z)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone was prepared from 11b. Workup and column chromatography (10% EtOAc in petroleum ether) gave 3-benzyl-5(Z)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone (R_f 0.43) and 3-benzyl-5(E)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydrofuran-2-one (R_f 0.6) in a 4:1 ratio. 3-Benzyl-5(Z)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydrofuran-2-one: 32.5%; IR 2120, 1810, 1670; ¹H NMR δ 0.2 (br s, 9 H, Me₃Si), 2.8-3.2 (m, 5 H, H3, H4, PhCH₂), 4.8 (m, 1 H, C=CH), 7.2 (m, 5 H, Ph); MS, m/z 284 (M⁺), 193 (M⁺ - PhCH₂), 73. Desilylation with AgNO₃/KCN gave **2b**: 28%; IR (CHCl₃) 3300, 1805, 1670; ¹H NMR δ 2.8-3.2 (m, 5 H, H3, H4, PhCH₂), 3.1 (d, 1 H, C=CH, J = 2.5), 4.8 (m, 1 H, C=CH), 7.2 (m, 5 H, Ph); MS, m/z 212 (M⁺), 121 - PhCH₂), 145; exact mass calcd 212.0837, found 212.0833. (M^+)

3-Benzyl-3-methyl-5(*E*)-prop-2-ynylidenetetrahydro-2-furanone (3). 3-Benzyl-3-methyl-5(*E*)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydro-2-furanone was prepared from 31: 66%; IR 1800, 1663; ¹H NMR δ 0.2 (s, 9 H, Me₃Si), 2.4 (s, 3 H, CH₃), 2.63, 3.08 (ABX, 2 H, H4, $J_{AB} = 16$, $J_{CH_2,C=CH} = 2.2$), 2.75, 3.1 (AB q, 2 H, $J_{AB} = 12$, PhCH₂), 5.2 (dd, 1 H, C=CH, J = 2.2, 2.2), 7.3 (m, 5 H, Ph). Desilylation with AgNO₃/KCN gave 3: 63%; mp 79-80 °C (hexane); IR (CHCl₃) 3280, 2102, 1795, 1660; ¹H NMR δ 1.38 (s, 3 H, CH₃), 3.1, 2.7 (ABX, 2 H, H4, $J_{AB} = 18$, $J_{CH_2,C=CH} = 2$), 3.12, 2.75 (AB q, 2 H, PhCH₂, $J_{AB} = 13.1$), 3.0 (d, 1 H, C=CH, J = 2), 5.14 (ddd, 1 H, C=CH, $J_{CH_2,C=CH} = 2$); MS, m/z 226 (M⁺), 91.

6(E)-(3-Phenylprop-2-ynylidene)tetrahydro-2-pyrone (4a). The lactone 4a was prepared from 14a in the manner employed for 1f: 52% mp 79-80 °C (hexane/CH₂Cl₂, 4:1); IR 1760, 1640; ¹H NMR δ 2.0 (m, 2 H, H4), 2.6-3.0 (m, 4 H, H3, H5), 5.5 (m, 1 H, C=CH), 7.3 (m, 5 H, Ph); MS, m/z 212 (M⁺).

6(*E*)-Oct-2-ynylidenetetrahydro-2-pyrone (4b). The lactone 4b was prepared from 14a and cuprous heptyne according to the procedure used for 1f: oil, 13%; IR 1760, 1640; ¹H NMR δ 0.9 (m, 3 H, CH₃), 1.2–1.8 (m, 6 H, CH₂CH₂CH₂), 2.0 (m, 2 H, H4), 2.3 (m, 2 H, C≡CCH₂), 2.5–3.2 (m, 4 H, H3, H5), 5.2 (m, 1 H, C≡CH); MS, *m/z* 206 (M⁺), 149, 135.

3-Benzyl-6(*E*)-**prop-2**-ynylldenetetrahydro-2-pyrone (4c). 3-Benzyl-6(*E*)-[3-(trimethylsilyl)prop-2-ynylidene]tetrahydro-2-pyrone was prepared from **14b**: 91%; IR 2130, 1780, 1635; ¹H NMR δ 0.2 (s, 9 H, Me₂Si), 1.6 (m, 2 H, H4), 2.5–3.0 (m, 4 H, PhCH₂, H5), 3.2 (m, 1 H, H3), 5.2 (br s, 1 H, C=CH), 7.2 (m, 5 H, Ph). Desilylation with AgNO₃/KCN gave 4c: 71%; mp 62–64 °C (hexane); IR (CHCl₃) 2178, 1755, 1636; ¹H NMR δ 1.4–2.0 (m, 2 H, H4), 2.5–3.0 (m, 3 H, PhCH₂, H5), 5.2 (m, 1 H, HC=C), 7.2–7.3 (m, 5 H, Ph); MS, *m/z* 226 (M⁺), 91.

Alkaline Hydrolysis Product of 1b. To a suspension of 52 mg of 1b in 2 mL of water was added 2 mL of 1 M NaOH. After being stirred at ambient temperature for 5 h, the yellow solution was acidified with 2.1 mL of 1 M HCl and extracted with EtOAc. The organic phase was dried with Na₂SO₄, treated with charcoal, filtered, taken to dryness, and redissolved in ether. Excess diazomethane in ether was added to this solution, the reaction was quenched with silica gel, and the major product (methyl-2-benzyl-4,6-dioxoheptanoate, mixture of diketo and enol tautomers) was isolated by preparative TLC (EtOAc/petroleum ether, 1:1): oil; IR 1780 (m), 1740 (s), 1610 (br), 1500 (m), 704 (s); ¹H NMR δ 2.00, 2.10, 2.19 (s, enol and keto CH₃), 2.2–3.3 (m), 3.63, 3.65 (s, enol and keto COOCH₃), 54.4 (s, enol H5), 7.1–7.4 (m, Ph); ¹³C NMR δ 23.8 (enol CH₃), 51.7 (OCH₃), 58.0 (keto C5), 100.1 (enol C5), 128.3–129.3 (Ph), 174.8, 188.1, 193.8 (enol C1, C6, C4); MS, m/z 262 (M⁺), 231, 220, 205, 163, 131, 91; exact mass (M⁺) calcd 262.1205, found 262.1201.

Acknowledgment. We are grateful to Leslie Copp and Bonnie Grundy for their assistance with several of the kinetic assays. We thank Drs. Roger Smith and John Moffatt for helpful comments and discussions.